MT EDUCARE LTD.

SUMMATIVE ASSESSMENT - 1 2013-14

CBSE - 2	X
----------	---

5-14

Roll No.								
----------	--	--	--	--	--	--	--	--

Series RLH

Code No. 31/1

Set - B

- Please check that this question paper contains 6 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 34 questions.
- Please write down the serial number of the question before attempting it.

MATHEMATICS

Time allowed: 3 hours

Maximum Marks: 80

General Instructions:

- i) All questions are compulsory.
- ii) The question paper consists of 34 questions divided in four sections: A,B,C and D.

Section **A** comprise 10 questions of 1 mark each,

Section **B** comprise 8 questions of 2 marks each,

Section C comprise 10 questions of 3 marks each, and

Section **D** comprise 6 questions of 4 marks each.

- iii) Question numbers 1 to 10 in Section A are multiple choice questions where you have to select one correct option out of the given four.
- iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only of the alternative in all such questions.
- v) Use of calculator is not permitted.

					2	•••			Set - B
				s	ECTIO	N - A			
	Que	estion nur	nber	1 to 10 car	ry 1 ma	arks each.			
1.	3.2 (a)	7 18	2r		(b)	a rational r	uumher		
	(a) (c)	a natural	l num	ber	(d)	an irrationa	al numb	er	
	()				()				
2.	If a	$m \neq bl$, the	en the	system of e	equatio	ns			
	ax -	+ by = c ,	lx +	my = n	(1)		<i>,</i> .		
	(a)	has a un	ique :	solution many solut	(D)	has no solu	ltion z pot hor	ve a solution	
	(C)	nas mini	ittery .	many solut	.1011 (u)	may or may	not nav		
3.	The	length of	the h	ypotenuse	of an i	sosceles rigł	nt triang	le whose one	e side is
	4√	$\overline{2}$ cm is				_		_	
	(a)	12 cm	(b)	8 cm	(c)	$8\sqrt{2}$ cm	(d)	$12\sqrt{2}$ cm	
1	Aa	uadratic n	olvno	mial the si	im of w	vhose zeroes	is 0 and	d one zero is	3 is
	(a)	$x^2 - 9$	(b)	$x^2 + 9$	(c)	$x^{2} + 3$	(d)	$x^2 - 3$	0, 13
	()						. ,		
5.	The	median o	of a gi	ven frequer	ncy dis	tribution is :	found gr	caphically wi	th the
	help	o of			(1)	D	1		
	(a)	Histogran	n		(D) (d)	Frequency Stondard d	polygon	1	
	(C)	Ogive			(u)	Stanuaru u	leviation	L	
б.	If the system of equations $2x + 3y = 5$, $4x + ky = 10$ has infinitely many								
	solı	itions, the	en k =						
	(a)	1	(b)	1/2	(c)	3	(d)	6	
7	The	HCF of 9	5 and	152 is					
	(a)	57	(b)	1	(c)	19	(d)	38	
	()		()		()		()		
3.	(sec	: A + tan A	.) (1 –	sin A) =					
	(a)	sec A	(b)	sin A	(c)	cosec A	(d)	cos A	
							otivolv		
a	In F	No. 4 949	the r	neggiireg of	D and				
9.	In F (a)	rig. 4.242, 50°. 40°	the n (b)	neasures of 20°.30°	D and (c)	40°. 50°	(d)	30°. 20°	
9.	In F (a)	rig. 4.242, 50°, 40°	the r (b) A	neasures of 20°, 30°	D and (c)	40°, 50°	(d)	30°, 20°	
9.	In F (a)	Fig. 4.242, 50°, 40°	the r (b) A	neasures of 20°, 30°	D and (c)	40°, 50°	(d)	30°, 20°	
9.	In F (a)	Fig. 4.242, 50°, 40°	the n (b) A	neasures of 20°, 30°	D and (c)	P are respe	(d)	30°, 20°	

10. if 8 tan x = 15, then sin $x - \cos x$ is equal to

(a)
$$\frac{8}{17}$$
 (b) $\frac{17}{7}$ (c) $\frac{1}{17}$ (d) $\frac{7}{17}$

SECTION - B

Question number 11 to 18 carry 2 marks each.

11. Find the mode of following distribution :

Height (in cm)	30-40	40-50	50-60	60-70	70-80
No. of Plants	4	3	6	11	8

- 12. Check whether $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 7x^2 + 2x + 2$.
- 13. Check whether 6^n can end with the digit 0 for any natural number n?
- 14. If $ST \parallel QR$. Find PS.

15. If sin (A+B) = cos (A-B) = $\frac{\sqrt{3}}{2}$ and A,B (A > B) are acute angles, find the values of A and B.

OR

- 15. If A, B, C are the interior angles of \triangle ABC, then prove that $\cos\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$.
- 16. Find the L.M.C and H.C.F. of 15, 18, 45 by the prime factorisation method.
- 17. Prove that $15 + 17\sqrt{3}$ is an irrational number.
- 18. Solve the following system of equations by using the method of crossmultiplication : 2x - y - 3 = 04x + y - 3 = 0

SECTION - C

Question numbers 19 to 28 carry 3 marks each.

- 19. Prove that $\frac{1}{2} \frac{\sqrt{5}}{3}$ is irrational.
- 20. Calculate the area of $\triangle PQR$, where OP = 6 cm, OR = 8 cm and QR = 26 cm. $\angle QPR = \angle POR = 90^{\circ}$

21. For any positive integer n, prove that n^3 - n is divisible by 6.

OR

- 21. Prove that one and only one out of n, n + 2 or n + 4 is divisible by 3, where n is any positive integer.
- 22. If α and β are the zeros of the quadratic polynomial $f(x) = kx^2 + 4x + 4$ such that $\alpha^2 + \beta^2 = 24$, find the values of k.
- 23. $\triangle ABC$ is right angled at B. AD and CE are the two medians drawn from A and C respectively. If AC = 5cm, AD = $\frac{3\sqrt{5}}{2}$ cm,

find the length of CE.

24. The distribution below gives the weight of 30 students of a class. Find the median weight of students.

Weight (in Kg.)	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75
No. of Students	2	3	8	6	6	3	2

OR

24. The mean of the following frequency distribution in 25. Determine the value of P:

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	5	18	15	Р	6

- 25. If $\tan \theta = \frac{12}{13}$, evaluate $\frac{2\sin\theta\cos\theta}{\cos^2\theta \sin^2\theta}$
- 26. x takes three hours more than y to walk 30 km. But if x doubles his speed, he is ahead of y by $1\frac{1}{2}$ hours. Find their speed of walking.
- 27. Without using trigonometric tables evaluate :

$$2\left[\frac{\cos 58^{\circ}}{\sin 32^{\circ}}\right] - \sqrt{3}\left[\frac{\cos 38^{\circ} \csc 52^{\circ}}{\tan 15^{\circ} \tan 60^{\circ} \tan 75^{\circ}}\right]$$

OR

Prove that : $\cos \theta \sin \theta - \frac{\sin \theta \cos (90^\circ - \theta) \cos \theta}{\sec (90^\circ - \theta)} - \frac{\cos \theta \sin (90^\circ - \theta) \sin \theta}{\cos \exp (90^\circ - \theta)} = 0.$

28. In the figure given below, if $\frac{QR}{QS} = \frac{QT}{PR}$ and $\angle PQR = \angle PRQ$. Prove that $\triangle PQS \sim \triangle TQR$.

SECTION - D

Question numbers 29 to 34 carry 4 marks each.

- 29. $(\operatorname{cosec} A \sin A) (\operatorname{sec} A \cos A) = \frac{1}{\tan A + \cot A}$
- 30. Obtain all other zeroes of $2x^4 6x^3 + 3x^2 + 3x 2$, if two of it's zeroes are $\frac{1}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$.

OR

30. In trapezium ABCD, AB || DC, DC = 2AB. EF || AB where E and F lie on BC and AD respectively such that $\frac{BE}{EC} = \frac{4}{3}$. Diagonal DB intersects EF at G.Prove that 7EF = 11 AB.

- ... 6 ...
- 31. In fig, DE || BC and AD : DB = 5: 4,

Find $\frac{\text{Area}(\Delta \text{DEF})}{\text{Area}(\Delta \text{CFB})}$.

- 32. 2 women and 5 men together can finish an embroidery work in 4 days, while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone to finish the work, and also that taken by 1 man alone.
- 33. Solve the equations graphically :

$$2x + y = 2$$
$$2y + x = 4$$

What is the area of triangle formed by the two lines and x - axis.

34. The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha)	50 - 55	55 - 60	60 - 65	65 - 70	70 - 75	75 - 80
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution, and draw its ogive.

OR

Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8 for some integer m.

All the Best 🗳

СВ	SE X	MT EDUCARE ITD	Set - B								
		SUBJECT : MATHEMATICS	Marks : 90								
		SUMMATIVE ASSESSMENT - 1									
Date	MODEL ANSWER PAPER Time : 3 hrs.										
	Any met	hod mathematically correct should be given full credit	t of marks.								
1	(b) o m	SECTION - A									
1.	(b) ar										
4. 3	(a) a - (b) 8 c	20 m									
- 0. - 4	(b) \mathbf{v}^2 -	- 9									
5	(α) Λ	ive									
6.	(d) 6										
7.	(c) 19										
8.	(d) cos	A									
9.	(b) 20°	P, 30°									
	7										
10.	(d) $\frac{7}{17}$										
	17	SECTION D									
11	Civon	SECTION - B x = 60, f = 11, f = 6, f = 9, h = 10									
11.	Given, .	$x = 50, f_1 = 11, f_0 = 0, f_2 = 0, 11 = 10$ $\begin{bmatrix} f_1 - f_0 \end{bmatrix}$									
		Mode = $l + \left\lfloor \frac{1}{2f_1 - f_0 - f_2} \right\rfloor \times h$									
		$= 60 + \left[\frac{11-6}{2 + 1 + 6}\right] \times 10$									
		50 [2×11-6-8]									
		$= 60 + \frac{30}{6} = 66.25$									
12.	On divi	ding $3x^4 + 5x^3 - 7x^2 + 2x + 2by x^2 + 3x + 1$									
	χ^2 -	$+3x+1)\overline{3x^4+5x^3-7x^2+2x+2}$ (3x ² - 4x + 2									
		$3x^4 + 9x^3 + 3x^2$									
		<u></u>									
		$-4x^3 - 10x^2 + 2x + 2$									
		$-4x^3 - 12x^2 - 4x$									
		+ + +									
		$2x^2 + 6x + 2$									
		$2x^{2} + 0x + 2$									

	Reminder is 0 hence $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$.								
13.	If 6^n ends with digit zero, then it will be divisible by 5, i.e., the prime factorisation of 6^n . must contain the prime number 5. This is not possible because $6^n = (2 \times 3)^n = 2^n \times 3^n$ This shows that the only prime factorisation of 6^n are 2 and 3 by uniqueness fundamental theorem of Arithmetic, there are no other primes in the factorisation of 6^n . So there is no natural number n for which 6^n ends with digit zero.								
14.	In $\triangle PRQ$, we have $ST \parallel QR$ $\Rightarrow \frac{PS}{QS} = \frac{PT}{RT}$ $\Rightarrow \frac{PS}{3} = \frac{3}{2}$ $\Rightarrow PS = \frac{9}{2}cm = 4.5 cm$ R $2cm$ T $3cm$ P								
15.	$\sin (A + B) = \frac{\sqrt{3}}{2} = \sin 60^{\circ}$ $A + B = 60^{\circ} \qquad \dots (i)$ and $\cos (A - B) = \frac{\sqrt{3}}{2} = \cos 30^{\circ}$ $\Rightarrow \qquad A - B = 30^{\circ} \qquad \dots (ii)$ On adding (i) (ii), We get $2A = 90^{\circ}$ i.e., $A = 45^{\circ}$ Putting the value of A in eq. (i), we get $B = 15^{\circ}$ OR								
15.	$\therefore \qquad A + B + C = 180^{\circ}$ $A + B = 180^{\circ} - C$ $L.H.S. = \cos\left(\frac{A+B}{2}\right) = \cos\left(\frac{180^{\circ} - C}{2}\right)$								

$$= \cos\left(90^{\circ} - \frac{C}{2}\right)$$

$$= \sin \frac{C}{2}$$
16.

$$15^{\circ} = 3 \times 5$$

$$18^{\circ} = 2 \times 3^{2}$$
So,

$$H.C.F. = 3$$

$$L.C.M = 3^{2} \times 2 \times 5 = 90.$$
17.
Let us assume that $15 + 17\sqrt{3}$ is a rational number.

$$15 + 17\sqrt{3} = \frac{p}{q}$$

$$17\sqrt{3} = \frac{p}{q} - 15$$

$$\sqrt{3} = \frac{p - 15q}{17q}$$
Since p and q are integers

$$\frac{p - 15q}{17q}$$
is a rational number

$$\therefore \sqrt{3}$$
 is rational
But we know that $\sqrt{3}$ is irrational.
our assumption is wrong,

$$\therefore 15 + 17\sqrt{3}$$
 is irrational.
18.
The given system of equation is

$$2x - y - 3 = 0$$
By cross- multiplication, we get

$$\frac{x}{-1} \times -3^{\circ} = = \frac{-y}{4} \times -3^{\circ} = \frac{2}{4} \times -3^{\circ} = \frac{1}{4} \times -3^{\circ}$$

 $\Rightarrow \quad \frac{x}{1 \times -3 - 1 \times -3} = \frac{-y}{2 \times -3 - 4 \times -3} = \frac{1}{2 \times 1 - 4 \times -1}$ $\Rightarrow \quad \frac{x}{3+3} = \frac{-y}{-6+12} = \frac{1}{2+4}$ $\Rightarrow \frac{x}{6} = \frac{-y}{-6} = \frac{1}{6}$ \Rightarrow x = $\frac{6}{6}$ -1 and y = $-\frac{6}{6}$ = -1 Hence, the solution of the given system of equations is x = 1, y = -1. **SECTION - C** Question numbers 15 to 24 carry 3 marks each. Suppose $\frac{1}{2} - \frac{\sqrt{5}}{3}$ is rational. $\frac{1}{2} - \frac{\sqrt{5}}{3} = \frac{p}{q}, \quad q \neq 0$ $\sqrt{5} = \frac{3q - \bar{6p}}{2q}, q \neq 0$ $\sqrt{5}$ is irrational while $\frac{3q-6p}{2q}$ is rational abd an irrational number can never be equal to a rational number. Thus our assumption is wrong. Hence $\frac{1}{2} - \frac{\sqrt{5}}{3}$ is irrational. In $\triangle POR$, $\angle POR = 90^{\circ}$ so by Pythagoras theorem, $PR^2 = PO^2 + OR^2$ OP = 6 sm, OR = 8 cm and QR = 26 cmAccording to question $PR^2 = 6^2 + 8^2$

 $PR^2 = 10^2 \Rightarrow PR = 10$ In the right triangled QPR by Pythagoras theorem,

19.

20.

ar (ΔPQR) = $\frac{1}{2} \times PR \times PQ$ $= \frac{1}{2} \times PR \times PQ$ $=\frac{1}{2} \times 10 \times 24 = 120 \text{ cm}^2$ 21. $n^{3} - n = n(n^{2} - 1) = n(n + 1)(n - 1) = (n - 1)n(n + 1)$ = product of three consecutive positive integers. Now, we have to show that the product of three consecutive positive integers is divisible by 6.Let a, a + 1, a + 2 by any three consecutive integers a. Let a, a + 1, a + 2 by any three consecutive integers. **Case I.** If a = 3q. a(a + 1) (a + 2) = 3q(3q + 1) (3q + 2)= 3q (even number, say 2r) = 6qr, (:. Product of two consecutive integers (3q + 1) and (3q + 2) is an even integer which is divisible by 6.) **Case II.** If a = 3q + 1 a(a + 1) (a + 2) = (3q + 1) (3q + 2) (3q + 3)= (even number, say 2r) (3) (q + 1) = 6 (rq + r), which is divisible by 6. **Case III.** If a = 3q + 2. a(a + 1) (a + 2) = (3q + 2) (3q + 3) (3q + 4)= multiple of 6 for every q = 6r (say), which is divisible by 6. Hence, the product of three consecutive integers is divisible by 6. OR 21. We Know that any positive integer is of the form 3q, 3q + 1 or 3q + 2 for some integer q. **Case I :** when n = 3q, $n = 3q + 0 \implies n$ is divisible by 3 $n + 2 = 3q + 2 \implies n + 2$ is not divisible by 3. $n+4=3q+4=3(q+1)+1 \Rightarrow n+4$ is not divisible by 3. and **Case II :** when n = 3q + 1, $n = 3q + 1 \implies n$ is divisible by 3 n + 2 = (3q + 1) + 2 = 3(q + 1) + 0Here remainder is zero, so (n + 2) is divisible by 3 n + 4 = (3q + 1) + 4 = 3(q + 1) + 2and \Rightarrow (*n* + 4) is not divisible by 3.

... 6 ...

Case III : when n = 3q + 2. $n = 3q + 2 \implies$ is not divisible by 3 n + 2 = (3q + 2) + 2 = 3(q + 1) + 1 \Rightarrow *n* + 2 is not divisible by 3 n + 4 = (3q + 2) + 4 = 3(q + 2) + 0and Here remainder is zero, so (n + 4) is divisible by 3. Thus, we conclude that one and only one out of n, n + 2 and n + 4 is divisible by 3. 22. Since a and b are the zeros of the quadratic polynomial $= kx^2 + 4x + 4$ f(x) $\alpha + \beta = -\frac{4}{k}$ and $\alpha\beta = \frac{4}{k}$ ÷. $\alpha^2 + \beta^2 = 24$ Now, $(\alpha+\beta)^2 - 2\alpha\beta = 24$ \Rightarrow $\left(-\frac{4}{k}\right)^2 - 2 \times \frac{4}{k} = 24$ \Rightarrow $\frac{16}{k^2} - \frac{8}{k} = 24$ \Rightarrow $\Rightarrow 16 - 8k = 24k^{2}$ $\Rightarrow 3k^{2} + k - 2 = 0$ $\Rightarrow 3k (k+1) - 2 (k+1)$ $\Rightarrow (k+1) (3k - 2) = 0$ 3k(k+1) - 2(k+1) = 0 $k+1 = 0 \text{ or}, \ k = \frac{2}{3}$ \Rightarrow Hence, k = -1 or, $k = \frac{2}{3}$ 23. By pythagoras theorem, In $\triangle ABD$, $AB^2 + BD^2 = AD^2$ $AC^{2} - BC^{2} + BD^{2} = AD^{23}$ $AC^2 - AD^2 = BC^2 - BD^2$ $5^2 - \left(\frac{3\sqrt{5}}{2}\right)^2 = CE^2 - BE^2 - BD^2$ In $\triangle BEC$,

	$25 - \frac{45}{4} = CE^{2} - \frac{AB^{2}}{4} - \frac{BC^{2}}{4}$ $25 - \frac{45}{4} = CE^{2} - \frac{1}{4}(AB^{2} + BC^{2})$ $= CE^{2} - \frac{1}{4} \times 25$ $CE^{2} = \frac{100 - 45 + 25}{4} = 20$ $CE = 2\sqrt{5} \text{ cm}$										
24.	Weight (in kg.)	No. of stud	lents		c.f.						
	40 - 45 45 - 50 50 - 55 l = 55 - 60 60 - 65 65 - 70 70 - 75	$ \begin{array}{c} 2 \\ 3 \\ 8 \\ f = 6 \\ 6 \\ 3 \\ 2 \end{array} $		с	2 5 .f. = 13 [19] 25 28 30						
		n = 30)								
			$\frac{n}{2}$ = 15								
		Medain = $l + \left(\frac{\frac{n}{2} - c.f.}{f}\right) \times h$ = $55 + \left(\frac{15 - 13}{6}\right) \times 5$ = $55 + 1.67$ = 56.67									
24.	C.I.	x _i	f	• i	$f_{i}x_{i}$						
	0 - 10 10 - 20 20 - 30 30 - 35 40 - 50	5 15 25 35 45	5 18 15 <i>p</i> 6 Σ f _i = 4	3 5 4 + p	25 270 375 35 <i>p</i> 270 Σ <i>f</i> _i <i>x</i> _i = 940	+ 35p					

$$1 = 0 + 1 + 1 = 0 = 0 = 0$$

$$Mean = \frac{\sum fixi}{2fi} = \frac{940 + 35p}{44 + p}$$

$$25 = \frac{940 + 35p}{44 + p}$$

$$25 = \frac{940 + 35p}{44 + p}$$

$$940 + 35p = 1100 + 25p$$

$$10 P = 160$$

$$P = 16$$

$$P =$$

30.	$= \frac{1}{\left(\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}\right)}$ $= \frac{\left(\frac{\sin^2 A + \cos^2 A}{\cos A - \sin A}\right)}{\left(\frac{\sin^2 A + \cos^2 A}{\cos A - \sin A}\right)}$ $= \frac{\cos A \cdot \sin A}{\sin^2 A + \cos^2 A}$ $= \cos A \cdot \sin A \qquad \dots (\therefore \sin^2 A + \cos^2 A = 1)$ From (1) and (2), L.H.S. = R.H.S. Two zeroes are $\frac{1}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$	
	One factor is $\left(x - \frac{1}{\sqrt{2}}\right) \left(x + \frac{1}{\sqrt{2}}\right)$ <i>i.e.</i> , $2x^2 - 1) \overline{2x^4 - 6x^3 + 3x^2 + 3x - 2} (x^2 - 3x + 2)$ $2x^4 - x^2$ $- \frac{+}{-6x^3 + 4x^2 + 3x}$ $-6x^3 + 3x$ $\frac{+}{-6x^2 - 2}$ $4x^2 - 2$ $-\frac{-}{4x^2 - 2}$	
30.	0 Another factor is $x^2 - 3x + 2 = 0$ $(x - 1) (x - 2) = 0$ $x = + 1 \text{ and } + 2$ Hence, other zeroes are 1 and 2. OR In trapezium ABCD, AB DC and DC = 2AB. Also $\frac{BE}{EC} = \frac{4}{3}$ In trapezium ABCD, EF AB CD $\frac{AF}{FD} = \frac{BE}{BC} = \frac{4}{3}$	

... 14 ...

Work done by 1 man in one day = $\frac{1}{y}$ According to the first condition, According to the second condition, $\frac{2}{x} + \frac{5}{y} = \frac{1}{4}$ $\frac{3}{x} + \frac{6}{y} = \frac{1}{3}$ Substitute $\frac{1}{x} = p$ & $\frac{1}{y} = q$ eq^{n} (i) and eq^{n} (ii) reduce to, $\therefore \qquad 2p + 5q = \frac{1}{4}$ $\therefore \qquad 8p + 20q = 1$ $\therefore \qquad 8p = 1 - 20q$ $3p + 6q = \frac{1}{3}$ 9p + 18q = 1 (ii) $p = \frac{1-20q}{8}$ (i) Substituting $q = \frac{1}{36}$ in eqⁿ (i), Substituting eqⁿ (i) in eqⁿ (ii) $p = \frac{1 - 20\left(\frac{1}{36}\right)}{8}$ $p = \frac{\frac{1}{1} - \frac{20}{36}}{8}$ $\therefore 9\left(\frac{1-20q}{8}\right) + 18q = 1$ $\therefore \frac{9-180q}{8} + 18q = 1$ $=\frac{36-20}{36\times8}$ $\therefore 9 - 180q + 144q = 8$ $= \frac{16}{36 \times 8}$ - 36q = -1 ÷ $q = \frac{1}{36}$ $\therefore \quad p = \frac{1}{18}$ ÷. Resubstituting for p and q. $q = \frac{1}{u}$ $p = \frac{1}{x}$ $\therefore \quad \frac{1}{36} = \frac{1}{y}$ $\frac{1}{18} = \frac{1}{x}$... *.*.. x = 18u = 36Woman would take 18 days to complete the work alone and a Man ... will take 36 days to complete the work alone.

			15		Set	t - B
33.	27. $2x + y = 2$	$\Rightarrow x = \frac{2 - y}{2}$	-		(i)	
	$\begin{array}{c c} x & 1 \\ \hline y & 0 \\ \end{array}$	$\begin{array}{c c} 0 & 2 \\ \hline 2 & -2 \\ \hline 2y - x = \end{array}$	4		(1)	
	\Rightarrow	$y = \frac{x}{2}$	$\frac{1}{2}$			
	Table of this eq	uation (ii) is	-		(ii)	
	x 0	2 4				
	y 2	3 4				
	Ar (ΔABC) = $\frac{1}{2}$	× BC × AO				
	$=\frac{1}{2}$	× 5.5 × 2				
	= 5.5	cm²				
34.	Production yield	Number of	Production yield	Cumulative	Points to be	
	(in kg/ha.)	farms		Frequency	plotted	
	50 - 55	2	50 or more than 50	100	(50, 100)	
	55 - 60	8	55 or more than 55	98	(55, 98)	
	60 - 65	12	60 or more than 60	90	(60, 90)	
	65 - 70	24	65 or more than 65	78	(65, 78)	
	70 - 75	38	70 or more than 70	54	(70, 54)	
	75 - 80	16	75 or more than 75	16	(75, 16)	

The possible remainders are 0, 1, 2 $\therefore x = 3q$ or 3q + 1 or 3q + 2If $x = 3q \implies x^3 = (3q)^3 = 27q^3 = 9(3q^3) = 9m$ for some integer m, where $m = 3q^3$ i) If $x = 3q + 1 \implies x^3 = (3q + 1)^3 = (3q)^3 + 3(3q)^2(1) + 3(3q)(1)^2 + (1)^3$ ii) [:: since $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$] $= 27q^3 + 27q^2 + 9q + 1$ $= 9q(3q^2 + 3q + 1) + 1$ = **9m** + **1** for some integer *m*, where $m = q(3q^2 + 3q + 1)$ iii) If $x = 3q + 2 \implies x^3 = (3q + 2)^3$ $= (3q)^3 + 3(3q)^2 (2) + 3(3q) (2)^2 + (2)^3$ [:: since $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$] $= 27q^3 + 54q^2 + 36q + 8$ $= 9q(3q^2 + 6q + 4) + 8$ = **9m** + **8** for some integer m, where $m = q(3q^2 + 6q + 4)$ cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8****